Backtracking Il: Examples



For a first example we give a backtracking algorithm that finds all
permutations of the numbers 0, 1, 2, ..., n-1. We will add numbers to
the permuation one at a time. We a very simple feasibility test: we can
extend a partial solution sofar with the number curr if curr is not
already in sofar. A partial solution is a complete solution if it has
length n. To find all permuations we use our pattern for all
backtracking solutions:



(define allsols (lambda (n)
(letrec ([backtrack (lambda (curr sofar)
; backtrack returns all solutions that extend sofar with value curr or higher
(cond
<sofar is a complete solution> (list sofar) ]
<curr is out of the range of possible values for this step> null]
(feasible curr sofar)
(let ([res (backtrack n <first value for next step> (cons curr sofar))]
[res2 (backtrack n <value after curr> sofar)])
(append resl res2)
[else (backtrack n <value after curr> sofar)])])
(backtrack <first value> null)))




This results in the following procedure:
(define allperms (lambda (n)
(letrec ([back (lambda (curr sofar)
; back returns a list of all permuations with prefix
; sofar and next element curr or higher
(cond
(= n (length sofar)) (list sofar)]
(= n curr) null]
(not (member curr sofar))
(let ([t1 (back O (cons curr sofar))]
[t2 (back (+ 1 curr) sofar)])
(append tl t2))]
[else (back (+ 1 curr) sofar)]))])
(back O null))))




For example, (allperms 3) returns

'((210)(120)(201)(021)(102)(012))



For a next example we solve the n-Queens problem. Remember that
this asks us to find n squares on an nxn grid so that no two are in the
same row, column or diagonal. For example, for a 4x4 grid one

solution is

We will represent solutions as lists of the (row col) selected squares.
For example, the solution above is '((2 3) (02) (3 1) (1 0))



We need feasibility tests to determine if we can extend a partial
solution with the new square (row col). To ensure that x is a feasible
row, we need to determine if x is the first element of any square
already in the partial solution:

(define rows (lambda (x sofar)
s returns #t if x is a row in sofar
(member x (map car sofar))))

We are going to find a square for the columns one at a time, so there
will be no possibility of putting two squares in the same column.

Note that if we have partial solution sofar, the next square we choose
is for column (length sofar).



It is easier than you might think to check the diagonals. Consider the
following grid with the location of each square indicated:

(0,0)| (0,1) |(0,2) | (0,3)

(1,0)|(1,1) {(1,2) | (1,3)

(2,0)](2,1)(2,2)| (2,3)

(3,0)((3,1) ((3,2) |(3,3)

Take any of the diagonals that rise as we read it from left to right.
For example, one such diagonal has entries (2,0), (1,1), and (0,2).
Each (row, col) entry in such a diagonal sums to the same value.



Once you have seen that, it is easy to spot the invariant on the
downward sloping diagonals:

(0,0)| (0,1) |(0,2) | (0,3)

(1,0)|(1,1) {(1,2) | (1,3)

(2,0)](2,1)(2,2)| (2,3)

(3,0)((3,1) ((3,2) |(3,3)

Instead of the sum, it is the difference between the row and column
that is the same on each element of these diagonals. For example, one
downward diagonal has entries (0,1), (1,2), and (2,3). The row-col
difference for each of these entries is -1.




This leads to functions for checking whether x is a feasible row for the
next step of our solution:

(define updiags (lambda (x sofar)
;returns #t if (x is on the upward diagonal of a pair in sofar
(let ([row X]
[col (length sofar)])
(member (+ row col) (map (lambda (p) (apply + p)) sofar)))))

Of course, there is a similar function for the downward diagonals.



We can put all of the feasibility checks into one procedure:

(define ok (lambda (x sofar)
(not (or (rows x sofar) (updiags x sofar) (downdiags x sofar)))))



After all of this, the backtrack solution to the n-Queens problem is a
simple application of the backtracking pattern. Remember the pattern:

(define backtrack (lambda (n curr sofar)
: returns the first extension of sofar into a solution with
; curr or higher as the value for the current step
(cond
[<sofar is a complete solution> sofar]
[<curr is out of the range of possible values for this step> null]
(feasible curr sofar)
(let ([res (backtrack n <first value for next step> (cons curr sofar))])
(if (null? res)
(backtrack n <value after curr> sofar)
res))
[else (backtrack n <value after curr> sofar)]))




This becomes:
(define queens (lambda (n curr sofar)
: returns the first solution it finds with sofar as
; its tail, curr or higher as the next entry.
(cond
(= n (length sofar)) sofar]
(= n curr) null]
(ok curr sofar)
(let ([res (queens n O (cons (list curr (length sofar)) sofar))])
(if (null? res)
(queens n (+ 1 curr) sofar)
res))]
[else (queens n (+ 1 curr) sofar)])))




For example, (queens 8 O null) returns
((37)(16)(65)(24)(53)(72)(41)(00))




We can just as easily find all solutions:
(define allqueens (lambda (n)
(letrec ([back (lambda (curr sofar)
: returns all solutions it finds with sofar as
; its tail, curr or higher as the next entry.
(cond
(= n (length sofar)) (list sofar)]
(= n curr) null]
(ok curr sofar)
(let ([t1 (back O (cons (list curr (length sofar)) sofar))]
[t2 (back (+ 1 curr) sofar)])
(append t1 t2))]
[else (back (+ 1 curr) sofar)]))])
(back 0 null))))




(allgueens 8) finds 92 solutions, though this includes many
redundancies such as rotations and reflections of other solutions.



